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Abstract--The fully-developed, laminar flow of two fluid layers in a horizontal channel is studied by means 
of the height-averaged balance equations. The closure issue is addressed and the closure relations for the 
wall and interracial shear stresses are given for some particular cases. 
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1. I N T R O D U C T I O N  

Consider the two-dimensional, steady-state, fully-developed, laminar flow of two fluid layers in a 
horizontal channel without interfacial phase change. The fluids are incompressible and their 
viscosities are constant. Given the volumetric flow rates Q~ and Q2 per unit width of the channel, 
let us ask ourselves how to determine the height fractions ~j and E2 (figure l) and the pressure 
gradient by using a two-fluid model based upon balance equations that are averaged over the height 
of each fluid layer. Actually, the closure issue can be stated as follows: what are the relations that 
we must choose to express (a) the topological law, (b) the inteffacial friction, (c) the wall friction 
on fluid l and (d) the wall friction on fluid 2, in order to obtain the same height fractions ¢1 and 
~2 and the same pressure gradient as those calculated by means of the local instantaneous equations? 
This problem appears trivial but is surely not. 

2. THE LOCAL INSTANTANEOUS PROBLEM 

The solution is obtained from the following set of equations: mass balance equations for fluids 
l and 2; momentum balance equations for fluids I and 2 and for the interface, no-slip conditions 
at the interface and on the walls. The height fractions are given by the following equation: 

[i] 

where #1 and #2 are the viscosities of the fluids and 

~, + q = 1. [21 

Equation [1] is a fourth-order polynomial in ¢~ or ~2 that has already been found by Bowen (1973). 
The pressure gradient G is given by 

-~" + #2 ~ , [31 

where H is the channel height. It should be noted that [1]-[3] show that the triangular relationship 
suggested by Hewitt & Hall-Taylor (1970) does hold, contrary to what had been claimed by Bowen 
(1973). Actually, given the flow rate of one of the fluids, the height of the same fluid can be 
calculated if the pressure gradient is known. 
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Figure I. The steady-state flow of two fluid layers. 

3. THE SAME PROBLEM S O L V E D  WITH 
H E I G H T - A V E R A G E D  E Q U A T I O N S  

The following equations should be used: 

mass balance for fluid l, 

mass balance for fluid 2, 

THE 

d 
q H<u, > = 0; [4] 

d 
-~x ~2H (u2 > =0; [5] 

mass balance at the interface, this equation is identically satisfied due to the absence of  phase 
change; 

momentum balance for fluid 1, 

momentum balance for fluid 2, 

momentum balance at the interface, 

and 

¢1H d(pl  ) 
dx - q i  q . ;  [6] 

~2 H d(P2 ) 
dx - '2 i  %.; [7] 

Pti = P2i ~Pi [8] 

~. = - % ~ ' q .  [9]  

Given H we have four differential equations, [4H7], five dependent variables, namely E,, (u , ) ,  
(u2), (p ) ) ,  (P2),  and three supplementary variables, namely ti, t~, and z2,.; P is the pressure and 
t is the shear stress. 

Considering [4]--[7] without looking at figure 1, it is impossible to say what are the respective 
positions of  fluids 1 and 2. This is a naive but important remark. If fluid 1, which is supposed to 
be the denser one, is above or below fluid 2 the flow is unstable or stable. This feature surely cannot 
be predicted by [4]-[7]. Consequently, as we need a supplementary equation to eliminate one of  
the dependent variables, this equation must contain some information regarding the respective 
position of  the fluids. The transversal momentum equations of  the local instantaneous problem lead 
immediately to the following result: 

{ ( P l )  = Pi + ½P,g*, H [10] 
<P2 ) = Pi - ½p2g£2H. [11] 

Thus, we can say that we have the following topological relation: 

(P2 ) = (P, ) - ½(~ P, + ~2p2)gH. [12] 
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This concept of a topological equation was discussed in detail by Delhaye (1988). If we consider 
a flow which is different from the one defined in figure 1, for instance a bubbly flow or a churn 
flow, the equations analogous to [10] and [11] cannot be obtained directly from the local 
instantaneous problem. They should result from physical intuition and an analysis specific to each 
case. 

As a result we have: 

d ( p l )  = d(P2) =-G. [13] 
dx dx 

From the momentum equations we thus obtain 

and 

I 
6 = (tlw + r2w) [14] 

"r i + "Clw 
Et = - - .  [15] 

Tlw "~ T2w 

The closure issue can now be stated as follows: find three relations for ti, Zl. and z2. so that 
E l and G calculated from [14] and [15], respectively, are the same as El and G calculated from [I] 
and [3], respectively. 

4. G E N E R A L  SOLUTION OF THE LOCAL INSTANTANEOUS PROBLEM 

Let us define 

and 

Q I  q ~Q-22 [16] 

m --'--, [17] 
/h 

Choosing q and m positive, it is possible to show that [1] has one and only one root Ej lying between 
0 and 1. This root can be obtained exactly but its expression is very complicated. However, q is 
easily obtained as a function of ~l and m (figure 2). Defining 

[18] 
~2 

equation [1] reads 

X 4 + 4 m X  3 + 3mX2(l - q )  - 4 q m X  - q m  ~ = O. [191 

1.0 
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Figure 2. The solution of [1]. 
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5. A P A R T I C U L A R  S O L U T I O N  OF THE L O C A L  I N S T A N T A N E O U S  

When the viscosities of  the two fluids are equal (m = I), [19] becomes 

(X + I)(X 3 + 3X 2 -  3 q X -  q) = 0 .  

The only physical solution of  [20] reads 

X = 2x/~- + ! cos 0 - 1, 

where 

As a result, we have 

0 =- ½arccos ( -  1 1)" 
x /q  + 

6. A S Y M P T O T I C  

(i) Case where m ~ 0 

P R O B L E M  

[20] 

[21] 

[22] 

X 

I + X  

2~/q + ! cos0  - 1 

2x /~  + 1 cos 0 
[23] 

S O L U T I O N S  OF THE L O C A L  I N S T A N T A N E O U S  P R O B L E M  

All the roots of  [19] tend to zero. As [19] is a fourth-order polynomial,  X--,0 as a power of  m. 
One finds 

X ~- [4qm + 3(q - i )rn(4qm) '/3 + 3m2(4qm)-°3(q 2 - 7q + 1)] ''3. [24] 

(ii) Case when q ~ 0 

One finds 

4 J. I'2 X "- ~qm + ~q(,qm)' (I - ~rn) + -~mq 2. [25] 

7. THE S H E A R  STRESSES AS O B T A I N E D  F R O M  THE L O C A L  
I N S T A N T A N E O U S  E Q U A T I O N S  

The determination of  the velocity profiles enables the wall and interfacial shear stresses to be 
calculated: 

E, {22 el + 2 QI 
r,.= +~/~2 ~ + ~--/~, ~ ,  

£2 t) 
[26] 

and 

q (2, 2 ~ ~22 - /~2 ~'~. [281 ~i = 2~/~t~i+ £: 

The temptation would be to claim that [26]-[28] are the closure relations that are looked for to 
solve the problem with the height-averagod equations. However, by replacing the wall and 
interfacial shear stresses in [I 5] by their expressions [26]-[28] would not lead to any new additional 
relation. On the contrary, they obviously lead to a trivial identity. Actually the closure relations 
for the wall and interfacial shear stresses are obtained by replacing £, and E2 as functions of m and 
q (from the solution of [19] or from [23]) in [26]-[28]. The general solutions can be obtained after 
lengthy calculations. Particular and asymptotic solutions are easier to handle and will be dealt with 
in the next paragraphs. In the following, these solutions will be called closure relations in 
accordance with the general case where the local instantaneous problem is of no help because of 
its complexity. 

Q, £i - 3 Q2 
~2, = +~/~, H 2 --/a2 [27] £, ~:~ H 2' 
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8. P A R T I C U L A R  SOLUTIONS FOR THE SHEAR STRESS 
CLOSURE RELATIONS 

When the viscosities of the t w o  fluids are equal, the shear stresses are given by 

~,w - r2w = 6/~ Q~ + Q2 
H 2 

Q~ + Q2 ( x / q  + l cos O - 1  

Ti=6/~---H-i-- x, ~ +  ~oosO )" 

9. ASYMPTOTIC SOLUTIONS FOR THE SHEAR STRESS 
CLOSURE RELATIONS 

and 

(i) Case where m ~ 0 

One obtains to the first order 

and 

(ii) Case where q --* 0 

One obtains to the first order 

J'12 ~2 ," I xl/3 
rtw - ~i "" 3 ~ H q m )  

~ 3/~2 Q2 
z2w - H2 • 

/h Q2 
~lw - = ~ - - T i  ~ 6  H2 . 

10. A RELATION BETWEEN THE WALL AND I N T E R F A C I A L  SHEAR 
STRESSES FOR THE PROBLEM CONSIDERED IN F I G U R E  1 

In each layer, the local instantaneous momentum balance reads 

dp d2u 
-d-~  +/~ "~-2y 2--0" 

Multiplying by 2 du/dy ,  we obtain 

_ 2  do du _:.~ __ du d2u 
dx dy + 2/a-~y~y~ = O. 

Integrating over the heights occupied by the two fluids we get 

_2~,,,,+,,,/<,,,,v /<,,,,~ ~ /<,,,,v /<,,,~v 
k~),- "' ,, d>,/,.+ = ~ "  + "  t ~ ) , . . - "  t-a-;),-_o. 

On the interface one has 

thus one obtains 

As we have 

t/li ~ 1/2i ~ 

rfd,,,V (d,,q' 1 [(d,,,y (d,,,y1 
": Lk-aT-y ) : . -  ,;aT i, J -- #' L \dy / , , , , -  \ dy ]i J" 

981 

[291 

[30] 

[31] 

[321 

[33] 

[34] 

[351 

[36] 

[37] 

[38] 

[39] 



982 N. COUTRIS ctal. 

and 

r,_-- -/~, \ dy ], -/~2 \ dy ,]," [40] 

Equation [38] can also be written in the following form: 

/~ (*~  - *~) =/~2(T j:w - r~). [41] 

This relation must be considered as a compatibility condition between the wall and inteffacial 
shear stresses which must be fulfilled by any closure relation. Such is the case for [26]-[28] when 
[1] is taken into account. 

!1. PHYSICAL SIGNIFICANCE OF [35] 

The local instantaneous momentum balances [34] written for each layer are the Euler-Lagrange 
equations corresponding to the stationarity of the following variational principle: 

f; I ~ .~j dy + -~2 dy, [42] 
tH 

where the Lagrangian "~k (k = 1, 2) is given by 

1 (du , )  2 l dp 
-~,_=~ ~y + ~ ~ u,. [43] 

The Legendre transform of [43] gives the expressions for the Hamiltonian for each layer: 

.~  1 fdu,'~ 2 l d p  
dx"*" ["1 

Equation [35] allows us to conclude that, for the problem considered in figure 1, the Hamiltonian 
~ ,  is a constant over the cross section of layer k. As a result we can think of 

~,~-~-y / as being a generalized kinetic energy 

and 

] dp 
- - - u ,  as being a generalized potential energy. 

The value of the Hamiltonian ~*', can be easily obtained, and is given by 

1 ¢~,. [45] 

12. PHYSICAL SIGNIFICANCE OF [38] 

Equation [38] can be written in the following form: 

A~ - A,, = AI. - A,, [46] 

where A,) and Aki (k = 1.2) are the entropy sources at the wall and at the interface, given by 

1 fduk ~2 1 fdu, y ;  
A,,., = ~m, ~"~'y .,] , A~ = ~/~, \ dy ] i  [47] 

T being the temperature of the system. 
It is important to note that the results obtained in sections 10-12 apply only to the problem 

considered in figure l, i.e. a two-layer flow with a flat interface which is indeed a flow without 
inertia. 
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Table 1. The closure relations for the two-layer flow problem solved with the height-averaged equations 
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General case Equal viscosities m --*0 q ~0 

Topological equation [12] [12] [12] [12] 
Interracial friction [30] [31] [33] 
Wall shear stress Without interest because [29] [31] [33] 

on fluid 1 of the complexity of 
the equations 

Wall shear stress [29] [32] [33] 
fluid 2 

13. C O N C L U S I O N S  

The closure relations for the problem considered, i.e. a two-layer flow with a flat interface, are 
given in table 1. These relations are quite complicated, even in the particular or asymptotic cases, 
and could not have been postulated a priori. 
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